首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   29篇
  国内免费   32篇
化学   216篇
晶体学   1篇
力学   1篇
综合类   1篇
数学   25篇
物理学   24篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   8篇
  2020年   9篇
  2019年   6篇
  2018年   13篇
  2017年   9篇
  2016年   11篇
  2015年   10篇
  2014年   14篇
  2013年   12篇
  2012年   10篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   10篇
  2007年   12篇
  2006年   15篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   8篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
  1980年   1篇
排序方式: 共有268条查询结果,搜索用时 578 毫秒
31.
We comment on the paper The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra by Carolyn Kieran and Paul Drijvers. We look at aspects of Kieran and Drijvers' analysis with regard to ‚task-technique-theory’ in the light of a model of abstraction in context and suggest that this re-viewing brings mutual analytic benefits.  相似文献   
32.
In this review, redox-induced reactions of π- and σ,π-complexes leading to the selective formation (or cleavage) of C–H, C–C, and C–O bonds have been summarized. To illustrate the synthetic potential of such methodology, the following representative reactions studied in our group are discussed: (1) oxidatively induced hydrogen elimination from “open” cyclic diene and dienyl complexes resulting in formation of “closed” dienyl and arene complexes, respectively; (2) reductive activation of C–H bonds in diene, vinylidene, and carbyne complexes forming new multiple C–C bonds; (3) oxidative dehydrodimerization of vinylidene complexes into binuclear μ-divinylidene species; and (4) oxidatively induced addition of oxygen nucleophiles to μ-divinylidene complexes affording cyclic μ-dicarbene derivatives. Oleg V. Gusev, deceased on October 31.  相似文献   
33.
There are numerous theories that offer cognitive processes of students of mathematics, all documenting various ways to describe knowledge acquisition leading to successful transitions from one stage to another, be it characterized by Dubinsky's encapsulation, Sfard's reification or Piaget's equilibration. We however are interested in the following question. Who succeeds at making the leap and can we describe the attributes that set them apart from the ones that do not? In this article, we offer a framework to categorize students as learners based on their individual approaches towards learning concepts in differential equations and related concepts – as demonstrated by their efforts to resolve a conflict, conserve and rebuild their cognitive structures.  相似文献   
34.
Organodihydridoelement anions of germanium and tin were reacted with metallocene dichlorides of Group 4 metals Ti, Zr and Hf. The germate anion [Ar*GeH2] reacts with hafnocene dichloride under formation of the substitution product [Cp2Hf(GeH2Ar*)2]. Reaction of the organodihydridostannate with metallocene dichlorides affords the reduction products [Cp2M(SnHAr*)2] (M=Ti, Zr, Hf). Abstraction of a hydride substituent from the titanium bis(hydridoorganostannylene) complex results in formation of cation [Cp2M(SnAr*)(SnHAr*)]+ exhibiting a short Ti–Sn interaction. (Ar*=2,6-Trip2C6H3, Trip=2,4,6-triisopropylphenyl).  相似文献   
35.
For the last decades, the hydrogen-abstraction−acetylene-addition (HACA) mechanism has been widely invoked to rationalize the high-temperature synthesis of PAHs as detected in carbonaceous meteorites (CM) and proposed to exist in the interstellar medium (ISM). By unravelling the chemistry of the 9-phenanthrenyl radical ([C14H9].) with vinylacetylene (C4H4), we present the first compelling evidence of a barrier-less pathway leading to a prototype tetracyclic PAH – triphenylene (C18H12) – via an unconventional hydrogen abstraction–vinylacetylene addition (HAVA) mechanism operational at temperatures as low as 10 K. The barrier-less, exoergic nature of the reaction reveals HAVA as a versatile reaction mechanism that may drive molecular mass growth processes to PAHs and even two-dimensional, graphene-type nanostructures in cold environments in deep space thus leading to a better understanding of the carbon chemistry in our universe through the untangling of elementary reactions on the most fundamental level.  相似文献   
36.
9,10‐(Bpin)2‐anthracene ( 3 , HBpin=pinacolborane) was synthesized from 9,10‐dibromoanthracene in a stepwise lithiation/borylation sequence. The reaction of 3 with highly activated magnesium furnished the diborylated magnesium anthracene 4 , which was quenched in situ with ethereal HCl to yield cis‐9,10‐(Bpin)2‐DHA (cis‐ 5 , DHA=9,10‐dihydroanthracene). Compound cis‐ 5 , in turn, can be reduced with Li[AlH4] in THF to give its diborate Li2[cis‐9,10‐(BH3)2‐DHA] (Li2[cis‐ 6 ]). In the crystal lattice, the THF solvate Li2[cis‐ 6 ] ? 3 THF establishes a dimeric structure with Li‐(μ‐H)‐B coordination modes. Hydride abstraction from Li2[cis‐ 6 ] with Me3SiCl yields the B?H?B‐bridged DHA Li[ 7 ]. This product can also be viewed as a unique cyclic B2H7? derivative with a hydrocarbon backbone. Treatment of Li2[cis‐ 6 ] with the stronger hydride abstracting agent Me3SiOTf (HOTf=trifluoromethanesulfonic acid) in THF affords the THF diadduct of cis‐9,10‐(BH(OTf))2‐DHA.  相似文献   
37.
《Mendeleev Communications》2020,30(4):433-435
  1. Download : Download high-res image (77KB)
  2. Download : Download full-size image
  相似文献   
38.
Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra‐atomic and inter‐atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra‐atomic and inter‐atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange‐correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange‐correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc.  相似文献   
39.
Treatment of divalent (ONNO)V(TMEDA) ( 1 ; ONNO=[2,4‐Me2‐2‐(OH)C6H2CH2]2N(CH2)2NMe2) with CO2 afforded [(ONNO)V]2(μ‐OH)(μ‐formate) ( 2 ). Whereas the bridging hydroxo and formate groups both originated from CO2, the H atoms present on the two residues were obtained through H‐atom radical abstraction from the solvent. DFT calculations revealed an initially linear CO2 bonding mode, followed by deoxygenation, and highlighted a synergistic effect between the so‐formed oxo group and an additional bridging CO2 residue in promoting radical behavior.  相似文献   
40.
The growth of polycyclic aromatic hydrocarbons (PAHs) is in many areas of combustion and pyrolysis of hydrocarbons an inconvenient side effect that warrants an extensive investigation of the underlying reaction mechanism, which is known to be a cascade of radical reactions. Herein, the focus lies on one of the key reaction classes within the coke formation process: hydrogen abstraction reactions induced by a methyl radical from methylated benzenoid species. It has been shown previously that hydrogen abstractions determine the global PAH formation rate. In particular, the influence of the polyaromatic environment on the thermodynamic and kinetic properties is the subject of a thorough exploration. Reaction enthalpies at 298 K, reaction barriers at 0 K, rate constants, and kinetic parameters (within the temperature interval 700–1100 K) are calculated by using B3LYP/6‐31+G(d,p) geometries and BMK/6‐311+G(3df,2p) single‐point energies. This level of theory has been validated with available experimental data for the abstraction at toluene. The enhanced stability of the product benzylic radicals and its influence on the reaction enthalpies is highlighted. Corrections for tunneling effects and hindered (or free) rotations of the methyl group are taken into account. The largest spreading in thermochemical and kinetic data is observed in the series of linear acenes, and a normal reactivity–enthalpy relationship is obtained. The abstraction of a methyl hydrogen atom at one of the center rings of large methylated acenes is largely preferred. Geometrical and electronic aspects lie at the basis of this striking feature. Comparison with hydrogen abstractions leading to arylic radicals is also made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号